HSP72 inhibits Smad3 activation and nuclear translocation in renal epithelial-to-mesenchymal transition.

نویسندگان

  • Yi Zhou
  • Haiping Mao
  • Shu Li
  • Shirong Cao
  • Zhijian Li
  • Shougang Zhuang
  • Jinjin Fan
  • Xiuqing Dong
  • Steven C Borkan
  • Yihan Wang
  • Xueqing Yu
چکیده

Although heat shock protein 72 (HSP72) ameliorates renal tubulointerstitial fibrosis by inhibiting epithelial-to-mesenchymal transition (EMT), the underlying mechanism is unknown. Because Smad proteins transduce TGF-beta signaling from the cytosol to the nucleus and HSP72 assists in protein folding and facilitates nuclear translocation, we investigated whether HSP72 inhibits TGF-beta-induced EMT by modulating Smad expression, activation, and nuclear translocation. To evaluate the roles of distinct HSP72 structural domains in these processes, we constructed vectors that expressed wild-type HSP72 or mutants lacking either the peptide-binding domain (HSP72-DeltaPBD), which is responsible for substrate binding and refolding, or the nuclear localization signal (HSP72-DeltaNLS). Overexpression of wild-type HSP72 or HSP72-DeltaNLS inhibited TGF-beta1-induced EMT, but HSP72-DeltaPBD did not, suggesting a critical role for the PBD in this inhibition. HSP72 overexpression inhibited TGF-beta1-induced phosphorylation and nuclear translocation of Smad3 and p-Smad3, but not Smad2; these inhibitory effects required the PBD but not the NLS. Coimmunoprecipitation assays suggested a physical interaction between Smad3 and the PBD. siRNA knockdown of endogenous HSP72 enhanced both TGF-beta1-induced Smad3 phosphorylation and EMT and confirmed the interaction of HSP72 with both Smad3 and p-Smad3. In vivo, induction of HSP72 by geranylgeranylacetone suppressed Smad3 phosphorylation in renal tubular cells after unilateral ureteral obstruction. In conclusion, HSP72 inhibits EMT in renal epithelial cells primarily by exerting domain-specific effects on Smad3 activation and nuclear translocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HSP70 inhibits high glucose-induced Smad3 activation and attenuates epithelial-to-mesenchymal transition of peritoneal mesothelial cells.

Heat shock proteins (HSPs) are molecular chaperones that were initially identified as proteins expressed following exposure of cells to environmental stress. However, the function of HSPs in epithelial‑to‑mesenchymal transition (EMT) of peritoneal mesothelial cells remains unknown. In the present study, the regulation of HSPs and their function in cell EMT, particularly in rat peritoneal mesoth...

متن کامل

Therapeutic Discovery Peroxisome Proliferator-Activated Receptor-g Activation Inhibits Tumor Metastasis by Antagonizing Smad3-Mediated Epithelial-Mesenchymal Transition

Epithelial-mesenchymal transition (EMT) was shown to confer tumor cells with abilities essential for metastasis, including migratory phenotype, invasiveness, resistance to apoptosis, evading immune surveillance, and tumor stem cell traits. Therefore, inhibition of EMT can be an important therapeutic strategy to inhibit tumor metastasis. Here, we show that activation of peroxisome proliferator-a...

متن کامل

Fate-determining mechanisms in epithelial–myofibroblast transition: major inhibitory role for Smad3

Epithelial-myofibroblast (MF) transition (EMyT) is a critical process in organ fibrosis, leading to alpha-smooth muscle actin (SMA) expression in the epithelium. The mechanism underlying the activation of this myogenic program is unknown. We have shown previously that both injury to intercellular contacts and transforming growth factor beta (TGF-beta) are indispensable for SMA expression (two-h...

متن کامل

A Crosstalk between the Smad and JNK Signaling in the TGF-β-Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells

Transforming growth factor β (TGF-β) induces the process of epithelial-mesenchymal transition (EMT) through the Smad and JNK signaling. However, it is unclear how these pathways interact in the TGF-β1-induced EMT in rat peritoneal mesothelial cells (RPMCs). Here, we show that inhibition of JNK activation by introducing the dominant-negative JNK1 gene attenuates the TGF-β1-down-regulated E-cadhe...

متن کامل

Curcumin Inhibits Transforming Growth Factor-β1-Induced EMT via PPARγ Pathway, Not Smad Pathway in Renal Tubular Epithelial Cells

Tubulointerstitial fibrosis (TIF) is the final common pathway in the end-stage renal disease. Epithelial-to-mesenchymal transition (EMT) is considered a major contributor to the TIF by increasing the number of myofibroblasts. Curcumin, a polyphenolic compound derived from rhizomes of Curcuma, has been shown to possess potent anti-fibrotic properties but the mechanism remains elusive. We found t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 21 4  شماره 

صفحات  -

تاریخ انتشار 2010